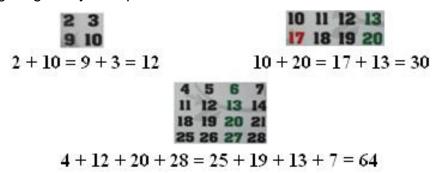


BERMAIN DENGAN KALENDER

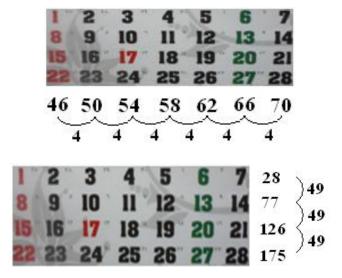
Wahidin, M.Pd

blog: headymathic.wordpress.com

e-mail: headymatic@uhamka.ac.id


abu, 19 Januari 2011, penulis memberikan gambar kalender UHAMKA khusus untuk bulan Mei 2011. Kemudian meminta 39 orang mahasiswa tahun ke-2 Program Studi Pendidikan Matematika FKIP UHAMKA untuk mengekplorasi dan menginvestigasi kalender yang diberikan. Instrumen yang diajukan kepada mahasiswa adalah untuk melihat angka-angka pada kalender tersebut berdasarkan cara penataannya, operasi bilangan yang digunakan, dan pola bilangan atau barisan.

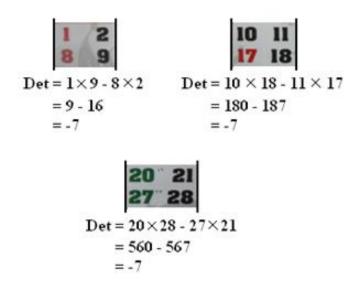
Alternatif hasil eksplorasi dan investigasi yang penulis tawarkan adalah sebagai berikut:


- K-1. Penataan bilangan secara diagonal merupakan bilangan ganjil atau genap, contoh: 1, 9, 17, 25 dan 6, 12, 18, 24, 30.
- K-2. Bilangan yang disusun menurut diagonal dari kiri atas ke kanan bawah merupakan barisan aritmetika dengan beda 8 (contoh: 2, 10, 18, 26), sementara yang disusun menurut diagonal dari kanan atas ke kiri bawah merupakan barisan aritmetika dengan beda 6 (contoh:7, 13, 19, 25, 31).
- K-3. Bilangan pada setiap baris merupakan barisan aritmetika dengan beda 1, contoh 22, 23, 24, 25, 26, 27, 28; dan bilangan pada setiap kolom merupakan barisan aritmetika dengan beda 7, contoh 1, 8, 15, 22, 29 dan 6, 13, 20, 27, sehingga kita bisa memperluas masalahnya kepada pertanyaan : tentukan bilangan pada baris ke-100 untuk hari Rabu" ataupun "bilangan 2011 berada pada hari apa?"

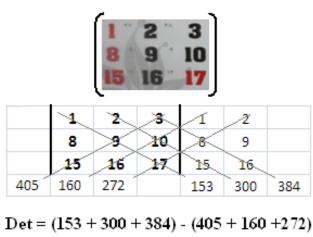
K-4. Untuk bilangan yang membentuk persegi atau persegipanjang, pasangan bilangan pada setiap pojok secara diagonal memberikan jumlah yang sama. Begitu juga untuk penjumlahan semua angka yang ada pada masing-masing diagonalnya. Seperti :

K-5. Pada susunan bilangan yang membentuk persegi 3 x 3, jumlah dua bilangan yang membentuk tanda tambah (+) adalah sama. Contoh:

K-6. Jumlah bilangan pada setiap kolom dengan banyaknya baris sama adalah berselisih 4 dari kolom sebelumnya, sedangkan untuk setiap baris berselisih 49.



Dengan demikian kita dapat memprediksi jumlah bilangan-bilangan yang berada pada baris ke-2011, yaitu $28 + 2010 \times 49 = 98518$. Secara umum jumlah bilangan-bilangan pada barisan ke-n adalah


$$U_n = 49n - 21$$

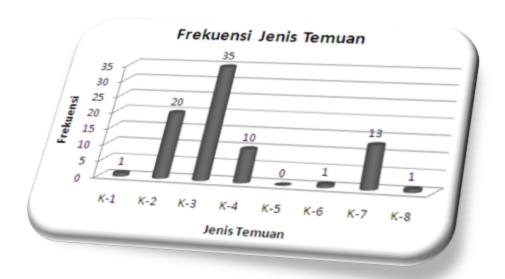
Untuk menjelaskan hal ini, kita tinjau kembali temuan pada K-3, yaitu bilangan pada setiap kolom merupakan barisan aritmetika dengan beda 7. Karena ada 7 kolom, yang mana setia kolomnya berselisih 7, sehingga jumlah bilangan-bilangan berdasarkan baris akan berselisih $7 \times 7 = 49$.

K-7. Determinan setiap matriks 2 x 2 adalah -7

K-8. Setiap matriks 3 x 3 tidak mempunyai invers, hal ini dikarenakan determinannya nol.

	15	16	27	_15	_16	
	22	23	24	<u></u>	23	
	29	30	31	29	30	
11339	10800	10912		10695	11136	11220

Dengan bantuan *Microsoft Excel* dengan perintah "=MDETERM(C1:F4)" untuk matriks 4×4 seperti



memberikan nilai determinan = 0. Begitu pula kalau kita teruskan untuk matriks 5×5 hingga matriks $n \times n$ akan memberikan determinan yang nol, dengan catatan penataan angka-angkanya berdasarkan pola kalender ini. Eksplorasi dan investigasi ini mampu memberikan banyak konjektur untuk dibuktikan secara induktif maupun deduktif, sehingga dapat menjadi suatu teorema. Untuk temuan K-3 ini, kita dapat memperumumnya (masih berupa konjektur) bahwa

Setiap matriks $n \times n$ tidak mempunyai invers, untuk $n \ge 3$ dan $n \in \mathbb{N}$

Berikut hasil kerja mahasiswa yang dirangkum dalam tabel, untuk dilihat kesesuaiannya dengan apa yang menjadi solusi penulis.

NO	JENIS TEMUAN	FREKUENSI	PERSEN		
1	K-1	1	2.6		
2	K-2	20	51.3		
3	K-3	35	89.7		
4	K-4	10	25.6		
5	K-5	0	0.0		
6	K-6	1	2.6		
7	K-7	13	33.3		
8	K-8	1	2.6		

Sementara untuk memperoleh banyaknya temuan (menemukan *n*-jenis) dapat dirangkum pada tabel berikut:

Banyaknya Menemukan	0	1	2	3	4	5	6	7	8
Frekuensi	1	8	18	11	1	0	0	0	0
Persentase (%)	2,6	20,5	46,2	28,2	2,6	0,0	0,0	0,0	0,0

Dari 8 temuan penulis, 7 di antaranya dapat diamati pula oleh mahasiswa, tentu dengan beragam frekuensi. Akan tetapi satu temuan penulis (yaitu K-5) yang belum dapat ditemukan oleh mahasiswa, yakni berkenaan dengan konsep:

bahwa penjumlahan secara palang akan memberikan hasil yang sama.